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Two-frequency oscillations of a conservative system with n degrees of freedom 
are studied. The problem is reduced to investigate canonical systems describing 
resonance phenomena. Single-frequency and multi-frequency oscillations were 

studied earlier in [ 1 - 31. 

1. Let us consider a conservative system with n degrees of freedom which has a sta- 
ble state of equilibrium and executes relatively small motions in the neighborhood of 

this state. The differential equations of motion of the system have the form 

i- CikQk) = - 5 (1.1) 
k=l k,j=l 

k il [ .$ a$’ (qkqiqs” -I- qrrqplJ f $ cg%,qjqs] - . (i = I,& . . . n) 
3 3 

Let the system undergo two-frequency oscillations of frequencies ml and @z(% 2 01). 
We shall consider the two-frequency resonant solutions of the system (1.1). We define 
the degree of the resonance terms in the right-hand sides of (1. l), as the resonance rank. 
The ratio o2 / w, for these terms is essential. 
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2. Consider at first a second order resonance. We set in (1.1) qk = egk where E iS 
a small positive parameter, omit the superscript bar and introduce the dimensionless 

time T = tilt. Then from (1.1) we obtain 

where the terms of order higher than second are discarded. We set 0s / or = fi (b 2 1) 
and seek the two-frequency solution of (2.1) in the form 

Qk = L~!)B COS (Z - $) + L&+4 cos (3 r - $5) -1 “q,il f E2’l,i2 T- . . 
(2.2) 

(k zz 1, 2, . II) 

where A, B, (4 and $I are slowly varying functions of T, and qh.r, qks,. . are additive 

correction terms which can be expressed uniquely in terms of =4, B, (r: $ and T. The 
normal functions L,>j’ (k, j = 1,2,. . . n) are obtained from the systems of algebraic 

equations 

2 (_ aik(Oj? + ‘.J @’ = 0 (i, ; = 1, 2, . . . n) 
h‘=l 

and possess orthogonal properties, i. e. 
II 

i,h’=l i&=1 

Under the assumptions made, all natural frequencies oi(j = 1, 2,. . . n) are rational 

numbers. 
Let us now substitute (2.2) into (2. l), multiply the id-th equation by &cl), add all 

equations together, and again multiply the i -th equation by Li(‘) and add all equations. 
This yields 

(u 0 + _‘,JJIJ’ _ ,%~)cos(T - $) $ (Ii+" - 2B’+2B’$‘) sin (z - II] t (2.3) 
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From the latter expressions it follows that 

i.e. the corresponding coefficients 1~~:: and 9.f: with the same indices are equal to 

each other irrespective of the distribution of indices. In order to solve the system (2.3) 
we shall utilize a corollary [4] to the existing asymptotic methods in the theory of non- 
linear oscillations. By analyzing the system (2.3) we come to the following theorem. 

Theorem 1. The second rank resonance is possible only when p =; 2. 
Let @=: 2. Then, using the trigonometric identities for cos (-c - 9 + A) and cos (bz - 

q - h) where h = (0 - 2) 7 - r+ + 29, and equating the corresponding terms in (2.3), 

we obtain the variational system 

(2.4) 

Since we seek the solution of (2.3) only in its first appro~matlon, we shall not set up the 
equations for determining the additive corrections. Assuming that b =_ 2, we find from 

(2.4), with the accuracy of up to the terms of first order of smallness in E, the abridged 
van der Pol system in the variables ~1, B, q, and +. The first and third equations of 

(2.4) yield the integral 
a2_.12 -t- 83 L c&2 (8 4 IflZ / q) (2.5) 

where Y.~ is a constant of integration proportional to the total energy of the mechanical 
system. The relation (2.5) corresponds to the energy integral and connects the amplitudes 

z1 and ff for each instant of time. From (2.5) it follows that if one amplitude decrea- 
ses , the other increases. From (2.4) taking into account (2.5). we obtain the following 

autonomous system in the variables iiD and 3. 

We cannot substitute B = 2 into the expression for )tt, since we assume that the mistun- 

ing p -- 2 is of the order of smallness F. We shall call the system of the form (2.6) 

relative to the amplitude ~1” or Be- B i (ox) and the variable 3L (including the phases 

(0 and +), with a minimum number of parameters, the canonical system for the reson- 
ance in question. Eliminating LL from (2.6) and integrating, we obtain 
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where c,, is the constant of integration. 
Investigation of the system (2.6) on the XY phase plane, for which X = ,4” cos h and 

Y .= A” sin h, i.e. -1’ and ?, are polar coordinates, yields a complete picture of all 

possible motions of the mechanical system. The phase trajectories of the system (2.6) 
are given by the expression (2.7) and they are all symmetrical with respect to the X - 

axis. In view of (2.Q all real trajectories lie on the boundary of, or within the circle 
_-IO _: 1. The canonical system (2.6) was studied in detail in [5, 61 while investigating 
the resonant motions of specific mechanical systems with two degrees of freedom. 

3. Let us consider a third rank resonance, Let the mechanical system under consider- 
ation possess an internal symmetry. Let also the kinetic and potential energies be sym- 
metrical with respect to the generalized coordinates qi (i -= 1, 2,. . . n). Then ni,C(‘) .= 

~;,i(‘) = 0 and the system (1.1) contains only terms of the odd power. In absence ofsuch 
symmetry, we obtain for the third order resonance the same basic results, albeit after 

more lengthy computations as they have to be carried out to the second approximation. 
Let us now make the substitution qk = F”~ yh- in (1. l), again discard the superscript 

bar and introduce the dimensionless time 7 = qt. This yields the system 

i (a&‘,; mk “&& = - E i [+ a$,?’ (Q,Jl(lSn -k qh.l],‘Q;‘) + (3.1) 
k=l k,j,s=1 

1 

6 “$‘QkQ,Q, 
1 

(i = 1, 2,. n) 

We seek the solution of (3.1) in the form (2.2). Analogous transformations again yield 
(2.3), but now we have 

F =~{~[(g~)--31,~))B3f2(g:Z;)-hjf)(~~+l))~~B]cos(r-~)+ 
f‘ 

+ [(gZ’ - 23q’) -43 + 2 (&’ - hK) (1 + B’)) .W] cos (pz - q) + 

& ( r;‘:” - 6$;,‘,) B3 cos (3~ - 311) + & (&!“z” - 632hg’) A3 cos (3p<-3q) + 

+ [ fp - kg) (p - 23 + 31 .4B2 COS [ (L3 - 3) Tr - cp + a$] + 

+ ,“:12” - k.z:) (3’ + 23 -I- 3)] : ID2 cos [(p + 2) 7 - ‘0 - 2$] A 

$(&h~;~ (I-23 L :,yq ] :l”B cos [ (2$ - 1) t - 2g + $1 + 

$ ,g;l - hg) (1 + 23 -; 33?)] _ 12B cos [(2P f 1) t - 2q - $1 i 
(r = 1,2) 

h$) = i .;p~!“qqP,l;c 1) z ; , &w = i ,~~‘qq,q)q) 
i, k, j, s=l i, k, j, %=I 

As before, we have 
qW = h’l-“) = . . 

T’l . 7 m7) _ ,w = 
gr1 or,1 ... 

In the Present case the analysis of the system (2.3) yields the following theorem. 
Theorem 2. Third rank resonance is possible only when fi z I and p z 3. Let us 

first assume that fi ‘T 1. Using the identities for cos (T - I+ t_ A), Cos (7 _ ?1; + 2 A), 
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Cos (fir - tp i a) and Cos (@ - v - 2x1, where h = (b - 1) T - q + I@, and making 

use of the assumption that fi z 1, we obtain the foflowing abridged van der Pot system 

dI? -__ 
cdz f&{l(.E’a3’ - 2$) .-I” -t_(@,‘) - %(,‘,l)) :lU”] pii1 ?. f (3.2) 

(ho22 
(11) ~._ 2/t:;)) ..t!!B siri 2h) 

dl$ 
-= 
cdz -I&$” 

:;I’ _ 2Q3 B’ .& 2 (@’ ~-- 2pj) .IZ :- ( ry$ - a~;;~,) x t‘L -1. 

.,I” co< ‘), i.. [ ($~;1:- - 2/,&y ; i- 3 (,R,, (11) -- a/g)) ,m] cos J”} 

d/l 1 - = 
EdT 16rr~_ {(g&l) - Zh:‘,l)j B3 -I- (“i,, 

(22) __ 2/LF22)j .,12N sir) h .!. 

(&’ -- ‘)h~;‘)) ..I.&” sin 2h) 

d9 1- 
FdZ -= __ 7 

i 
(gtf’ _ 2hp22)) .,I” -+- 

Zhm* . 
?. (g) - 2/z&q B” -i ($1) -- ‘hgq x 

13’ (;os ‘h + [(“r@ -~ ““;g 7 t_ :i (“y - 2/p;?,) .W] co.‘? h 1 .l 

The first and third equation of (3.2) again yield the integral (2.5). but now we have 

a2 = 7~12 i ??$I. From (3.2) and (2.5) we obtain the following canonical system for the 
resonance : 

&l” j ii,L := (i - _xpp [b (1 - Am2) + cAaz] sin ii j (3.3) 

21” (1 -.- ‘49 sin 2h 

i% / du = 2n~ + 4aAc2 + [b (1-4 Ao2) (1 - Ao2)‘,‘2 A”-’ + 

cd” (3 - C4”2) (1 - R=J)-W cos h + 2 (1-2 HZ) co9 2h 

The system (3.3) has the following integral : 

,A”2 4. &“4 + [ha.,0 (1 _ ‘pp -t_ &“3 (1 - pj:q cos h + _402 x 

(1 - 1402) cos 2h = CO 

where CO is the constant of integration. 

(3.4) 

4, Let us investigate the system (3.3) on the XY phase plane (X = A” cos h and 
Y = A0 sin h, where 4“ and h are polar coordinates). The phase trajectories of the 

system (3.3) are given by the expression (3.4) and are all symmetric with respect to the 
X -axis. All real trajectories lie at the boundary of, or within the circle A” = 1. 

First we find the singularities of the system (3.3). From the conditions dAO / du = 

dk I du = 0 we see that three types of singularities exist : points (a) on the X -axis. points 



Two-frequency resonant osclllatlons of conservative systems 705 

(b) on the curve 
K {b (I - -4’7 + cAo2 + 4A” (1 ‘- Ao2)‘!’ ~0s h = O} 

(they always appear as a pair of points distributed symmetrically relative to the X-axis) 
and points (c) which lie on the boundary of circle A” = 1. The system (3.3) was studied 

in detail in [7] for the case b = c = 0. 

Let us first consider the case b # U, c = 0. The curve K now becomes a half-ellipse. 

The polar angle of the points (c) is given by 

and there are four of these points, distributed symmetrically with respect to the X- and 
y -axes. 

The abscissas of the points (a) are found from the equation 

nt*_y -_ _ 2a*p - f (1 -/Ix”) (1 - X2)‘.” 
t 

m + 1 
m* = - 

n - l)\ 
6 ’ n*=7j (4.1) 

From (4.1) we see that we have either one or three points (a) (except in the limiting 

cases). Their distribution can be obtained by solving (4.1) graphically. 

Points (b) exist for m in the interval 

(I?& bl’ I)$) I %I = [I6 - b2 (5 + 2n)] / (16 + b2), rnS, = -1-2~7. 

while points(c) exist in the interval (-I--2a, l-20). 

Various typical patterns of distribution’ of the phase trajectories are determined by the 

number and type of the singularities. The system (3.3) gives, even in the case c = 0 , 
a large number of such typical patterns differing from each other, therefore we shallonly 
indicate some of them. A case is possible, when three (a) and (b)-type singularitiesexist 

(see Figs. 1 and 2). Figure 1 shows the points (b) as centers, two of the points (a) as sad- 
dles and one as a center. Figure 2 shows the points (b) as saddles and points (a) as cen- 
ters. Figure 3 depicts the case when all three points (a) are centers and all three (c) are 

saddles. Figures 4 and 5 show the cases when all possible singularities exist, three (a), 
two (b) and four (c). In Fig. 4 the separatrix passing through the saddle point (a) embra- 

ces two points (b), and in Fig. 5 a similar separatrix embraces the other two points (a). 
Let us now consider the case when b = 0, c $1 0. In this case we replace the variable 

rl” by B” (B” = B / (ox)) using the relation (2.5). Introducing U’ = - u and 1~” = 

- m - 2a we again obtain, in the new notation, the system (3.3) for b # 0, c = 0 which 
has already been investigated. We can therefore state that in the case b = 0, c # 0 we 

have exactly the same number of typical patterns of the phase trajectories as in the case 
b#O, c= 0. 

The canonical systems in the variables A”, h and B”, h for which the relation 
A”2 f B”Z = 1 holds, shall be called circularly conjugate. Figures 6-8 show the phase 
trajectories for the circularly conjugate systems, which are depicted in Fig. 1, 4 and 5, 
respectively. Here the singularities (c) exist in all cases and their coordinates are A”= 1, 
h = n / 2 and 3n/ 2. We have either two or four (a)-type singularities (the points (a) 
include the origin of reference which is always a singularity). Points (b) now lie on a 
fourth order curve. 

Let us consider the case t, + (1, c + c). Replacing in (3.3) .,I” by B”, and using (2.5) 
we again obtain system (3.3), although in a different notation. It can be asserted that 
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the system (3.3) is therefore circularly self-conjugated. Here we encounter a large num- 
ber of typical patterns of the phase trajectories due to the presence of four parameters, 
a, b, c and m. We note that now we have either two or four (a)-type points (but the ori- 
gin of reference is no longer a singularity), and everything said previously remains valid 
just as in the case b = 0, c # 0. Therefore Figs. 6 - 8 also give a qualitative represen- 
tation for this general case. 

6. Let p- 3. Using the identities for cos (t - I$ + A) and cos (8~ - 9 -h), where 
h = (b - 3) T - v + 3$, we obtain, in analogy with the previous cases, the following 
canonical system for this resonance : 

3 K22 
(22) _ 1EfL(22) 

4a -7 ~3 
22 

(22) _ 1&22) 
Rll 

;LlJ ._ Zhfi 6 &'l" _ 1()/$22) 
6 RIZ 

A and B are again connected by (2.5), but here q * = 9ms / ml. The system (5.1) has 

the following integral : 
mAa j- aA” j- A” (1 - AC2)‘j2 COS h = Co (5.2) 

where c,, is the constant of integration. The only singularities existing here are of the 

(a)-type ; there are either one or three of them (with the exception of the boundary ca- 
ses), and we have relatively a small number of typical patterns of the phase trajectories. 

The canonical system (5.1) was obtained and studied in [8], while solving the problem 
on resonant oscillations of a conservative system with two degrees of freedom. 

The patterns of the phase trajectories show that motions with constant amplitudes are 

feasible. These motions will be periodic and will have the corresponding center-type 

points. Motions with periodically varying amplitudes are also possible, and the correspon- 
ding trajectories will be closed. The separatrices and saddle-type singularities corres- 

pond to the transitional (nonperiodic) changes in the amplitudes. The results obtained 
occur, in particular, in the resonant motions of conservative systems with two degrees of 
freedom. 
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Particular solutions of equations of motion of a heavy gyroscope in gimbal mount 
with the outer gimbal axis horizontal was considered in [ 1, 21. 

Particular solutions of this problem are considered below in the case, when the 

axis of rotation of the outer gimbal is horizontal and the center of gravity of the 
gyroscope and of the casing are not lying on the axis of symmetry of the gyro- 

scope ellipsoid of inertia but in a plane passing through the axis of symmetry 

perpendicularly to the axis of rotation of the inner gimbal. The latter solutions 
also complement each other symmetrically, similarly to those mentioned above. 

The fixed system of coordinates 0211; is permanently attached to the axis of rotation 
of the outer gimbal (Fig. 1). The 5 -axis lies on the axis of rotation of that gimbaLThe 

system of coordinate axes Or,y,z, is perma- 
nently attached to the outer gimbal. The 
-L‘Z - and y, -axes coincide with the axes of 
rotation of the outer and inner gimbals, res- 
pectively. The system of coordinates OZ~?J~Z, 

is permanently attached to the casing. The 
?/i-axis is directed along tha casing axis of 

rotation and the 21 -axis along the rotor spin 
axis. Axes x1, y1 and z1 are the principal 
axes of the ellipsoid of the casing inertia 
about the fixed point 0. 

Let us assume that the ellipsoid of rotor 
inertia about point 0 is the ellipsoid of ro- 

Fig. 1 
tation of the casing about the %-axis. 

We use the following notation: rl is the 
angle of turn of the outer gimbal ; p is the angle of turn of the casing (inner gimbal), 
y is the angle of turn of the rotor in the casing (angle of spin of the gyroscope about the 
z.,-axis); ~~ is the moment of inertia of the outer gimbal about the : -axis; ‘11, BI 


